Tetrahedron Letters No.31, pp. 2691-2699, 1965. Pergamon Press Ltd. Printed in Great Britain.

THE METHYLATION OF THE AMBIDENT ANIONS N,N'-DIARYLPHOSPHAMIDINES BY METHYL IODIDE

M.I.Kabachnik, V.A.Gilyarov, R.V.Koudriavtsev

Institute of Organo-Element Compounds U.S.S.R. Academy of Sciences Moscow (Received 15 June 1965)

The methylation of sodium salts of N,N'- diarylphosphamidines by methyl iodide was studied to elucidate the effect produced by the polarity of the substituents in the ambident anion on the alkylation trend. N,N'- Diarylphosphamidines $/I/^{1/}$ are weak acids; their sodium salts /II/ are formed by the action of sodium or its hydride. When these salts are methylated by methyl iodide, the trend of reaction depends on the nature of A and B substituents /see diagram/.

2691

$$C_{2}H_{5}C = NC_{6}H_{4}A = Na = \begin{bmatrix} C_{2}H_{5}O & NC_{6}H_{4}A \\ C_{2}H_{5}O & NHC_{6}H_{4}B \end{bmatrix} = \begin{bmatrix} C_{2}H_{5}O & NC_{6}H_{4}A \\ C_{2}H_{5}O & P \end{bmatrix} = NHC_{6}H_{4}B = \begin{bmatrix} C_{2}H_{5}O & P \\ C_{2}H_{5}O & P \\ I \end{bmatrix} = \begin{bmatrix} NC_{6}H_{4}B \\ C_{2}H_{5}O & P \end{bmatrix}$$

$$\frac{H_2O}{CH_3NHC_6H_4R} + NH_2C_6H_4B + CH_3NHC_6H_4B + NH_2C_6H_4R$$

$$V VI VII VIII$$

In contrast to other known cases involving alkylation of ambident $anions^{2/}$, in phosphamidine-anions two atoms of the same element, viz. nitrogen, compete and, thus, the difference in the nature of the alkylated elements (0 and C in enolate-anions, 0 and N in lactim--lactam anions, etc.) is eliminated. The symmetry in the structure of the salts /II/ differing only in the substituents occupying the para- and meta-positions in the phenyl rings equalizes the steric conditions of attack and thereby eliminates any effect of the steric factor on the alkylation trend^{3/}. Finally, the solubility of the sodium salts of phosphamidines in tetrahydrofuran makes it possible to study methylation in a solution and thereby eliminate the effect of heterogeneity, which is so frequently observed in ambident ion reactions 4/. Thus in the instance described the influence of polar effects of A and B substituents reveals itself in a pure form.

In view of the fact that the a priory methylation mechanism is identical for both nitrogen atoms the ratio of the alkylation rate constants for both atoms is undoubtedly equal to the ratio of the yields of products /III/ and /IV/ $^{5/}$:

$$K_a/K_b = Q_a/Q_b$$
 /1/

The effect of A and B substituents on the methylation rate constant of the "a" nitrogen atom can be described by the Hammett equation:

$$\log K_{a}/K_{a}^{o} = f_{1} \delta_{A} + f_{2} \delta_{B}$$
 /2a/

Here f_1 and f_2 is the susceptibility of the reaction centre to the effect of the substituent, transmitted, respectively, through the phenyl ring and through a longer conjugated system ${}^{\sim}C_6H_4 = N = P^{-1}$

Similarly for the effect of the substituents on the alkylation rate of the "b" nitrogen atom:

$$\log \kappa_{b}/\kappa_{b}^{\circ} = f_{2} \delta_{\beta} + f_{1} \delta_{\beta}$$
 (2b)

Naturally, here β_1 and β_2 have changed places. Taking account of $K_a^o = K_b^o$ and equation /1/ we obtain:

$$\log Q_a / Q_b = (f_2 - f_1) (\delta_B - \delta_A) \quad 131$$

In the course of a preliminary investigation all the required syntheses were made, the methylation of 0,0-diethyl-N,N'-diphenylphosphamidine /I, A = B = H/and its sodium salt by methyl iodide was studied, the structure of the methylation products was elucidated, the consecutive reaction of secondary methylation, etc. was investigated and the conditions permitting a quantitative investigation were specified. In some special experiments the ratio Q_a/Q_b was found to be unaffected by the depth of transformation, i.e. that the relationship /l/ is valid.

The reaction was conducted in tetrahydrofuran; the initial component concentrations 0.07 Mol/1; temperature 20°, the experiment continued for 3 days.

The analytical method devised for the determination of Q_a/Q_b involves the hydrolysis of the reaction products by HCl treatment, the isolation of the mixture of bases /V-VIII/ by alkali treatment and a subsequent analysis of the mixture by the GPC technique on Willy Giede's apparatus /GDR/, model GCHF-18 with a katharometer. A stainless steel column, 2 m long and 6 mm in diameter was filled with diatomite firebrick 0,25-0,5 mm with 20% boiled butter; the temperature of the column was 160-190°; helium rate was about 80-85 ml/min. The composition of the mixture was determined with a relative error within 5%.

The obtained data are presented in Table 1, fig.1.

Fig.1 Dependence of Q_a/Q_b on $\delta_B - \delta_A$

As can be seen, they agree well with equality 3. The processing of the results by the least square method produced a linear dependence

 $\log Q_a/Q_b = 0.757 (G_B - G_A) - 0.022 /4/$

The correlation coefficient $r \approx 0.979$; the mean deviation s = 0.05. The straight line can thus be assumed to pass through the origin.

The positive value of $\int_2^2 - \int_1^2 dt$ provides evidence that the methylation is primarily directed towards the nitrogen atom which is bound with the phenyl madical carrying a more electronodonor (less electronoacceptor) substituent. From our data ρ_1 and ρ_2 cannot be determined independently of one another. Since $\rho_2 - \rho_1 > 0$, one of the three possibilities must be realized:

1) $\rho_2 > \rho_1 \ge 0;$ 2) $\rho_2 \ge 0 > \rho_1;$ 3) $0 \gg \rho_2 > \rho_1$

The third one is most probable; both ρ are negative and the less electrophylic is the substituent /diminishing σ / the higher is the alkylation rate. Since in absolute values $|\rho_i| > |\rho_2|$ this effect is naturally stronger in the case of a shorter conjugation chain. The analysis made supports the conclusion that the methylation is primarily directed towards a more nucleophylic nitrogen atom, i.e. towards the one in which the conjugation chain with a more electronodonor (or less electronoacceptor) substituent is shorter, a longer conjugation chain being not favourable to prevailing methylation.

The methylation of ambident anions by methyl iodide usually proceeds according to S_{N_2} mechanism, i.e. with the intersection of the reaction centre, the enclate-anions being methylated on the carbon, the lactim-anions, on the nitrogen, etc. Such alkylation trend is usually explained either by a higher polarization of the carbonium centre (participation of the

269**6**

longer conjugation chain), or by its easy desolvation or by the advantages of the benzol-like transition state with participation of metal cation^{6/}. In the last case the transition state in the methylation of phosphamidine anion should be represented as:

The experimental data presented in this paper do not permit, at least in the case of phosphamidineanions, to choose any one of these interpretations.

Table 1

The Results of the Methylation of Sodium Derivatives of Substituted Diphenylphosphamidines

A	В	log Q _a /Q _b	B - À
m-CH ₃	H	0	0,069
p-CH3	Ħ	0,050	0,170
Н	p-Cl	0,128	0,227
m-CH3	pC1	0,226	0,296
н	m-Cl	0,248	0,373
p-CH3	p-Cl	0,326	0,397
m-CH3	m-Cl	0,373	0,442
p-CH3	m-Cl	0,464	0,543
p-CH30	m-F	0,364	0,605
p-(CH3)2N	Н	0,421	0,600
p-CH30	p-CF3	0,630	0,819
p-(CH3)2N	р-С1	0,658	0,827
p-(CH ₃) ₂ N	m-F	0,602	0,937
p-(CH3)2N	m-Cl	0,739	0,973
$p-(CH_3)_2N$	p-CF3	0,812	1,151
	A m-CH ₃ p-CH ₃ H m-CH ₃ H p-CH ₃ p-CH ₃ p-CH ₃ p-CH ₃ 0 p-CH ₃ 0 p-CH ₃ 0 p-(CH ₃) ₂ N p-(CH ₃) ₂ N p-(CH ₃) ₂ N p-(CH ₃) ₂ N	A B m-CH ₃ H p-CH ₃ H H p-C1 m-CH ₃ p-C1 m-CH ₃ p-C1 m-CH ₃ p-C1 m-CH ₃ p-C1 p-CH ₃ m-C1 p-CH ₃ m-C1 p-CH ₃ m-C1 p-CH ₃ m-C1 p-CH ₃ O m-F p-(CH ₃) ₂ N H p-CCH ₃ O p-CF ₃ p-(CH ₃) ₂ N m-F p-(CH ₃) ₂ N m-C1 p-(CH ₃) ₂ N m-C1	AB $\log Q_{g}/Q_{b}$ m-CH3HOp-CH3H0,050Hp-C10,128m-CH3p-C10,226Hm-C10,248p-CH3p-C10,326m-CH3m-C10,373p-CH3m-C10,373p-CH3m-C10,364p-CH30m-F0,364p-CH30p-CF30,630p-(CH3)2NH0,421p-CH30p-CF30,630p-(CH3)2Nm-F0,602p-(CH3)2Nm-F0,602p-(CH3)2Nm-C10,739p-(CH3)2Nm-C10,739p-(CH3)2Np-CF30,812

REFERENCES

- V.A.Gilyarov, Chemistry and the Application of Phosphoroorganic Compounds. Proceedings of the First Conference. Moscow, USSR Academy of Sciences Press, 1957, p.275.
- 2. R.Gompper, Angew. Chem. 76,412 (1964).
- N.Kornblum, R.Seltzer, J.Amer.Chem.Soc. <u>83</u>,3668 (1961); S.T.Yoffe, K.V.Vatsuro, E.E.Kugutcheva, M.I.Kabachnik, Tetrahedron Letters, 1965, 593.
- N.Kornblum, A.P.Lurei, J.Amer.Chem.Soc. <u>81</u>, 2705 (1959).
- R.Wegscheider. Z. physik. Chem. <u>30</u>, 593 (1899).
 O.Exner, Collection Czechoslov. Chem.Commun. <u>26</u>, 1 (1961).
- B.A.Rudenko, L.G.Potapova, V.F.Kutcherov, J.Analyt. Chem. (U.S.S.R.). <u>19</u>, 802 (1964).
- 7. N.Kornblum, R.A.Smiley, R.K.Blackwood, D.C.Iffland,
 J.Amer.Chem.Soc. <u>77</u>, 6269 (1955).
 A.Brandstrom, Ark.Kemi. <u>6</u>, 155 (1963); <u>7</u>, 81 (1964).